Features

- Low Insertion Loss: 0.35 dB @ 2.5 GHz 0.55 dB @ 5.8 GHz
- Isolation: $27.0 \mathrm{~dB} @ 2.5 \mathrm{GHz}$ 25.0 dB @ 5.8 GHz
- Low DC Power Consumption
- Miniature LUSON6L (1.0x1.0x0.4 mm) Using Lead (Pb) free materials with RoHS compliant
- PHEMT process

Description

The HWS541 is a GaAs PHEMT MMIC SPDT switch operating at $2.0-6.0 \mathrm{GHz}$ in a low cost miniature LUSON6L ($1.0 \times 1.0 \times 0.4 \mathrm{~mm}$) plastic lead (Pb) free package. The HWS541 features low insertion loss and high isolation with very low DC power consumption. This switch can be used in WiMAX or IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$ WLAN PC card and access point applications as transmit/receive switch, antenna diversity switch, or band-selection switch.

LUSON6L (1.0x1.0X0.4 mm)

Unit:mm

Electrical Specifications at $25^{\circ} \mathrm{C}$ with $\mathbf{0 , + 3 V}$ Control Voltages

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Insertion Loss	$\begin{aligned} & 2.0-3.0 \mathrm{GHz} \\ & 3.0-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & 2.0-3.0 \mathrm{GHz} \\ & 3.0-6.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 24.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 25.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss	$\begin{aligned} & 2.0-3.0 \mathrm{GHz} \\ & 3.0-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 20.0 \\ & 15.0 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Power for 0.5 dB Compression	2.5 GHz @0/+1.8V @0/+3.0V		$\begin{aligned} & 25 \\ & 31 \end{aligned}$		dBm dBm
Input Third Order Intercept Point	20 dBm Per Tone, 2.50 GHz @+3V		50		dBm
Switching Time	10\% to $90 \%, 90 \%$ to 10% RF		80		nsec
Control Current			2		uA

Note: All measurements made in a 50 ohm system with $0 /+3.0 \mathrm{~V}$ control voltages, unless otherwise specified.

Typical Performance Data with 8pF
 Capacitors @ $+25^{\circ} \mathrm{C}$

Return Loss vs. Frequency

Insertion Loss vs. Frequency

Isolation vs. Frequency

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	$+33 \mathrm{dBm} @+3 \mathrm{~V}$
Control Voltage	+6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Electrostatic Discharge Machine Model	Class M 1

Pin Out (Top View)

Note:

1. DC blocking capacitors $\mathrm{C}_{\mathrm{B}}=8 \mathrm{pF}$ are required on all RF ports.
2. RF by-pass capacitors $C_{A}=8 p F$.
3. Exposed pad in the bottom must be connected to ground by via holes.

Logic Table for Switch On-Path

VC1	VC2	RFC-RF1	RFC-RF2
1	0	Off	On
0	1	On	Off

$' 1 '=+1.8 \mathrm{~V}$ to +5 V
$' 0 '=0 \mathrm{~V}$ to +0.2 V

