Features

- Low Insertion Loss: 0.4 dB @ 2.5 GHz $0.5 \mathrm{~dB} @ 5.8 \mathrm{GHz}$
- Isolation: $24 \mathrm{~dB} @ 2.5 \mathrm{GHz}$ 27 dB @ 5.8 GHz
- Low DC Power Consumption
- Miniature QFN12L (3x3 mm) Using Lead (Pb) free materials with RoHS compliant
- PHEMT process

Description

The HWS432 is a GaAs PHEMT MMIC SPDT switch operating at DC-6 GHz in a low cost miniature QFN12L ($3 \times 3 \mathrm{~mm}$) plastic lead (Pb) free package. The HWS432 features low insertion loss and high isolation with very low DC power consumption. This switch can be used in IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}$ WLAN PC card and access point applications as transmit/receive switch, antenna diversity switch, or band-selection switch.

QFN12L (3 x 3 mm)

Electrical Specifications at $25^{\circ} \mathrm{C}$ with $0,+3 \mathrm{~V}$ Control Voltages

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Insertion Loss	$\begin{aligned} & 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 4.90-6.00 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 4.90-6.00 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 27 \end{aligned}$		dB dB dB
Return Loss	$\begin{aligned} & 0.10-6.00 \mathrm{GHz} \\ & 2.40-2.50 \mathrm{GHz} \\ & 4.90-6.00 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Input Power for One dB Compression	$\begin{aligned} & 5.00 \mathrm{GHz} @+3 \mathrm{~V} \\ & 5.00 \mathrm{GHz} @+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 34 \end{aligned}$		dBm dBm
Switching Time			30		nsec
Control Current			5	100	uA

Note: All measurements made in a 50 ohm system with $0 /+3.0 \mathrm{~V}$ control voltages, unless otherwise specified.

Typical Performance Data with 8pF Capacitors @ +25 ${ }^{\circ} \mathrm{C}$

Insertion Loss vs Frequency

Isolation vs Frequency

Return Loss vs Frequency

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	$+32 \mathrm{dBm} @+3 \mathrm{~V}$
Control Voltage	+6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Pin Out (Top View)

Note:

1. DC blocking capacitors $\mathrm{C}_{\mathrm{B}}=8 \mathrm{pF}$ are required on all RF ports.
2. Exposed pad in the bottom must be connected to ground by via holes.

Logic Table for Switch On-Path

VC1	VC2	RFC-RF1	RFC-RF2
0	1	Insertion Loss	Isolation
1	0	Isolation	Insertion Loss

$$
\begin{aligned}
& \prime 1 '=+3 \mathrm{~V} \text { to }+5 \mathrm{~V} \\
& \prime 0 \text { ' }=0 \mathrm{~V} \text { to }+0.2 \mathrm{~V}
\end{aligned}
$$

